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ABSTRACT ﬁl”7 L{C; ;7
The article consists of two parts. /1%
The first part examines the problem of investi-
gating the emissivity of a pinnacled surface for the
case when the surrounding space is a black body with
zero temperature. It is found that in the gemeral
case the effective emissivity of a pinnacled surface
is a function of the degree of blackness of the
lateral face of the pinnacle e, the angle at its
apex o, and the dimensionless parameter N, which
depends on the following quantities: temperature
of the pinnacle base, height of the pinnacle, angle
at its apex, and thermal conductivity of the pinnacle
material., The initial system of equations is solved on
a machine for several values of €, a, and N.
The second part examines the problem of computing
the emissivity of a system made of cooled tubes which
are located in parallel and which have emissive,
triangular fins. The most favorable distribution of

the emissive pinnacles along the cooled tube perimeter.¥q d/
udho

* Note:

Numbers in the margin indicate pagination in the original foreign
text.



and the methods for optimizing the system under con-

sideration are investigated.

I. Emissivity of a Pinnacled Surface /2

Let us investigate the two-dimensional problem of computing the emissivi-
ty of a surface formed of triangular pinnacles having a base temperature T,
and a lateral face degree of blackness € (Figure 1). We shall first investi-
gate pinnacles with fairly large extension, for which the law of thermal
radiation and the equations of thermal conductivity along the pinnacle are

valid in the following form:

:g&[xl)- A(A -X)Z’/f[i:r @
B_ida(xl):_ ?a/); | )
T CaS =
where:
Q - the thermal flux through the pinnacle cross section with the
coordinate X';
A - thermal conductivity coefficient of the pinnacle material;
a - angle at the pinnacle apex;
q dx; - resulting radiation of a pinnacle lateral face element - the
cosy

outgoing element of thermal flux with allowance for inter-
irradiation of the pinnacles.
Equations (1) - (2) lead to the following expression for determining the /3

temperature distribution along a pinnacle after a change of variables.
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Figure 1

Let us first examine trapeziform pinnacles Figure 1), for which the

following boundary conditions of equation (3) can be assumed:

T:Ta for'XrO)'

, (4)
f/j—);:a for X:A,

In determining q(x), we shall examine the case when the surrounding

).

space has the parameters ¢ = 1 and T = 0. The expression for determining q(x)

will then have the following form (Ref. 1)
A

fo 2 ; ! ) .2
GiX)= BXI~H,, <6 TYxy- £ SR xra)sin e Ay

2 2 37 (5)
< @ [(@+a)+(x+2) ‘c‘?&’*ﬁ)ﬁ?*ﬁ)(b&# /e
o :
where:
,; or /'/Vv - - the specific thermal flux from the adjacent pinnacle
E= X P
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the surface x;

,c’;g::g/-ﬁgT /~ ,/7- < ;,./ . - the specific flux of effective radiatiomn

R ¥s

from the surface .. .

Let us introduce the following dimensionless variables: i3
I A ¢ I »{ = - A
il N J(: /‘/ 8= _8_ = ©(6)

7o 4,° z / £, 6'7"’) GTv > L, ?

In these variables, after equation (3) is integrated with the use of the second

boundary condition (4), it will be written as follows:

:7' ‘
Va3
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B(X)=ET(FYH(I-ED A,

- - (11)
B3y ET(E)*(1-E)H, .,
and T = 1 will be the boundary conditions for equation (7) in the case of
X = 0.
In accordance with (5), the amount of heat radiated by one pinnacle

will be written in dimensionless variables as follows:

4
¢ S, - - -
7 = NCE : - 12
§e=R4,C T, //5{x) Hy o [ 55 (12)
o .

The effective degree of blackness of a pinnacled surface will be deter-
mined as the ratio of the heat radiated by the pinnacle or by the trough 95
to the heat which would be radiated by the pinnacle base having the tempera-
ture T, and the degree of blackness € = 1 (qid = 2L1GTg sin %b. Therefore,

the effective degree of blackness for the surface under consideration will be

determined by the following expression

eff

4
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o
from which it can be seen that it is a function of the parameters
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N, a and ¢

The system (7)-(11) and (13) was solved on an electronic computer by numeri-
cal method, and the solution was of an asymptotic type in the case of
T~+1and T~ 0.

Figures 2, 3 and 4 show the dependence of the effective degree of black-
ness of a pinnacled sprface on the degree of blackness ¢ of a surface
with pinmacles * for different values of the thermal conductivity parame-
ter N and the angle a. It can be seen that for small values of ¢ the pinnacled
surface can sharply increase the effective degree of blackness in the case of
N + 0, which is significant in the case of high temperatures at which it may

be difficult to use coatings which increase the degree of blackness. On the

*Translator's Note: Based on the context, this should correctly read
"without pinnacles".
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other hand, when necessary one can significantly lower the effective degree of
blackness by providing rather 1large values of the parameter N.

The nature of the relationships in Figures 2, 3 and 4 can be explained /6
by the fact that not only the geometry of the pinnacles and the degree of
blackness of their surfaces, but also the temperature decrease occurring be-
tween its base and the apex (the larger the parameter N, the greater the tempera-
ture decrease along the pinnacle) can influence the respective emissivity of
the pinnacled surface.

The approximate solution of the problem regarding the effective emissivity

of an isothermal pinnacled surface, which corresponds to a particular case of



the problem under consideration when N = 0, which was obtained in (Ref. 2),

is plotted in Figures 2-4, For this case, the dependences obtained above are

valid for any values of a, and therefore for N = 0 computations were also per-

formed for a = 60; 90 and 120° (the dot-dash lines in Figure 4, which practi-
cally coincide with those obtained in [Ref. 2] for a > 90°, are approximate
relationships).

The results obtained can be applied to computing the emissivity of the
pinnacled surface of a cylinder. 1Imn this case, in Figures 2-4 the angle o
does not designate the angle at the pinnacle apex, but rather the angle
between the lateral faces of the pimnacles, which equals a +-%1, where n is

the number of pinnacles on the cylinder.

2. Investigation of an Emissive, Fin-Tube System

Let us investigate the two-dimensional problem of computing the thermal
radiation of an infinite system of star-shaped emitters having four points
with triangular heat transfer fins; these fins are located at the apexes of
a cooled prism and are distributed symmetrically with respect to the plane
containing the axis of the individual emitters (Figure 5a). This system
corresponds quite accurately to a system of cooled tubes which are located
in parallel and which have emitting triangular fins. ‘

We shall solve this problem under the following assumptions:

1. The heat transfer fins of the emitters have the same geometry.

2. The physical thermal properties of the fin material do not depend
on temperature.

3. The temperature of a side of the cooled prism is constant along the
perimeter.

4. The surrounding space is a black body with zero temperature.



Figure 5b

5. The surfaces of the fins and the sides are gray diffusive emitters.

6. The emissive fins are fairly thin, so that the transverse temperature
gradient in the fin can be disregarded, as compared with the longitudinal
gradient.

Taking the above assumptions into account, we can write the law for /8
thermal radiation and the equation of heat conductivity along the fin ip

the following way:

. &f &./7-
Qrx)=-20lh-a2) F—— (14)

(15)

dQ(.zz):~/§g,[x) * ;7{2[;8.)/&/.2



where A -

Q(x) -

q; (x) -

qr(x) -

the heat conductivity coefficient of the finned material,

the angle between the fin lateral faces,

height of the fin,

thermal flux through the fin cross section with the coordinate x,
fin temperature,

specific flux of resulting radiation from the fin surface on
which thermal fluxes fall, not only from the adjacent fin and
the prism side, but also from the elements of the adjacent star-
shaped emitter (Figure 5a),

specific flux of resulting radiation from the fin surface which
is in a state of radient heat exchange only with the adjacent

fin and the prism side.

Equations (14) and (15) lead to the following expression for determining

the temperature distribution along the fin /9

2T AT Q)4 QoD
(;C'JU;>6£2;9 —Aciﬁf “' a ;{’_;gé(’ , =

<

© (16)

Let us first examine trapeziform fins having the length L, (Figure 5a).

In this case, we can assume the following boundary conditions for equation (16)

: o7
| 7T = 7"0 for x:Omd—f:Ofor x:,éi (17)

where T, is the side temperature of the cooled prism.

The specific fluxes of the resulting radiation from the fin surfaces will

1 ) be determined by the following expressions:

GUEI7 B~ H ) H, iy Fl o (€)% a0 OO

10
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*H /{-»x["“)"ﬁé, XD+ A (:2-‘)_/ (20

- the specific flux of effective radiation from the fin surface under consider-

ation on which thermal fluxes fall, not only from the adjacent fin and the

prism side, but also from elements of the adjacent star-shaped emitter /10

(in equation (20) on, e is the degree of blackness of the emitter surface,

and 0 is the Stefan-Boltzmann constant)
Bz EGT (-w)+(/ ENf Hutm () +H,y., . (x] @

- the specific flux of effective radiation from the fin surface which is in
a state of radiant heat exchange only with the adjacent fin and the prism
side;

Hé/.;.z["’); ~-¢-~['7") H/{-bx[ ;:“' e /7/;_’“[.22))

o (205 Hponsy (2);

- the specific fluxes on the fin under consideration from surfaces designated
by the first letter of the subscript.

Assuming that the emitting element of the fin surface is located in the
fin plane of symmetry, we can obtain the following relationships for deter-
mining specific fluxes on the f1n under con51derat10n (Ref. 1):

Xy Sy : (22)

Hg-wf}:) 4,/5(j)(xé’74é/ 7,,/.1,/‘)/-*-)3/‘2 J
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0
where &, is the radius of the circle circumscribing the prism (see Figure 5a);

[? - the distance between the fin ends of adjacent emitters (see
Figure la); ‘}g: ngl - dimension of the prism sides;

51/47 c/)) %), 5{“))3(/))3[44) 8 [C/ - specific fluxes of
effective radiation from surfaces designated by the index in the
parenthesis.

The expressions for determining the specific fluxes of effective radiation

included in formulas (22)-(28) have the following form:

By EC -r(/- C//r/ (Ot H, LG *H sy (y)v‘%ﬁ'/yﬂé’ﬁ ;g/) (29)
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E(2)=EGT, '*//'fjfx—»w“/ 4. /,4,]) (30)

BIED = 8¢ Brx ) B0); BE)B(y); BIE=8x) (D

where the specific fluxes }-{V"ﬁ'(y)) (é/)) ;,_,y(é’/), ‘ [12
/L{‘.,’;"D_»’/{‘?))' /‘//é_,)y@() N A/{'(_Dy(u)}' /-»é_w/u) ~ are determined by means

of the following relationships (Ref. 1):
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An analysis of the relationships obtained shows that there are 19 unknown

13




functions, taking into account equation (18):

& g/ 9" e/ LA C
jAéFo}?g) ﬁﬂﬁ/eg) X“’Aféqz/éhﬁéféé)

In order to determine these 19 unknown functions, we have a system of 19
equations: equations (16) and (22)-(38).

Let us introduce the following dimensionless variables:

LA g X g Y s A gl ",__‘L‘_.
SRR SRS /wfzf’ (9

In these variables, after equation (16) is integrated with the use of
the second boundary condition (4), it is written in the following way with

allowance for relationships (18) and (19):

SO - [Hyaed 24y (73

(40)

# A g on B2 *"g I P sl D (RN} 0

where
~— 32
N = ———-————A’ S /o (41)
7 -~ d
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and the remaining 18 equations in dimensionless variables can be obtained
from relationships (22) - (38), in which the real variables are replaced by

the dimensionless variables introduced.

-~ / - .
BUR)2ET G0 (1-OfH, (DA GO+, (A, Ry A ()] 12k
EHT) & ffx)«ﬂ(ﬂ oo (7 # Hy o (7]
/ -
~ 1 [z, (5ot (Ey+T) Al E
Floil X ) B(E) /f ::«.7 . )_ s
4 (o)™ o CotX) ~

- ‘!};_ :“?&-./,c’—

- L £ 7 o i
| ‘ Hﬁ-¢;»//¥)° 4 [f/)(;é??;/-@?‘ "i (/5)5/8 ) etc. :
| o
|

In accordance with (18) and (19), the amount of heat emitted by a umit
of fin length (fin length designates the fin extension in a direction perpen-
dicular to the plane of the drawing in Figure 5a) can be written in dimension-

less variables as follows:
g 74 6’“’7{[@0{)7‘5 “cz)-/H, HyssE) 4y (R
(42)
-,-/./ /X);A/ X(x)-/-rf’ /X)'/‘ x/f)*/‘z..x(f‘?)]jdf

The amount of heat emitted by a unit of prism side length will be deter-
mined from the following relationships:
(a) For that prism side which is in a state of radiant heat exchange

with the adjacent emitter:
=4, IYrH  (T)FH,, (F)F (43
G b S B 17 52 9

+f"f’£ (F)*+H, ooy g/ja’y
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(b) For that prism side which is not in a state of radiaat heat /15

exchange with the adjacent emitter

g
Gt E e 2T rENg AT = - (44)
Dpre LG T, / { L(&)-[H, (&34 /-/g*,f “)/f Aee

Let us now determine the emission coefficient of a system which repre-

sents the ratio of heat emitted by the emitter under comnsideration

G?/J?Q + 3 7‘0

Z27 % pre ',,pr.é;) to the heat q4q which would be emitted by the

given emitter in the case of infinitely large thermal conductivity of the fin
material, [:j= © and € = 1. The expression for determining qi4 will

have the following form:

{:7 id "~ DL ré 7c u ‘ 0455'/2 450 (45)

and the emission coefficient will be determined by the following expression:

|
i z oz ztos 5 oo
7 V(ﬁ&)&;ﬁﬁ‘di/ E2g) 5@] [Hyox RO+ H,_ (%) +

# DM E yes Dyt o (ST

/ /B3 //v,c.,fﬂ*rf ()* H,/.,.. ST e, f I, (T

,a/f@(a)-[// (2)+ U{J)]]ﬂ/&

from which it can be seen that it is a function of the parameters /16
./*‘J;- ; go;’ & and” . It can be determined by solving equation (40) together
with equations (22) - (38) written in dimensionless variables.

In the case of the specific dependence ? = ?//\f é.o) é; E) and

16




Al Lo L Tyl

BEN7AN/ERE AR

..... N/amany LT

’ .;\\ \W M\ ] " AR RIEN
5 .\ [ \\ N\ ! %‘3 m ~\ %

" M k - . I.J\\ N . w

g o] VIEEE N

L N 3

d - - .. JRON L SN SO Q

A

»_L:

Figure 6

17




— /

23 ‘ e/

& 2 3PS
S~

l L L. 1R

~an 5

Figure 7
18

&7




15

[24

G
- - &
n,.w mw
. \ ﬁw
L
/
e
0\
9 ] -
194
m of 18] o & )
[/ \ \
| [
S U S T P . T T N B
Zw,w,wmwww?mw.o,o.o,o,o,?ooo.oaa

Gy

/';/,,/

C&

Figure 8

19




H [ R
§ ! ! H
CE ot —_— e ————— A L L
5 &‘:%%' P N ; i
T -~ g S I N N L 1 &s025! |
i : st ‘: o2 ?
S g o ;
- F% i \:-N '*\‘
BRSNS T —
"%\ b S —)
o8 g, 20
; ¢ ‘ I\\\\¢
: ‘ ! ; b
i { i ~
; ! ; T~ T~
(&2 ; . i \\_:\"‘\
] i { T —
: ! | . —
: i ! ] SN~ [ T
é — ! E N\\’\
o — E:g;fs(éj—qu;:} ‘
——— . r0586¢7 ooz
s | 11 _
o o1 e@ ©3 o4 e©5 c& o7 g8 o9 X
Figure 9

of selected values for Eo, A CO) 7, and ¢, the expression for de-

termining the heat emitted by an individual emitter can be obtained from the

following relationship:
9. pu 7 S 1+ BY)OTISInGEe  us)

The system of equations obtained was solved numerically on an electronic

20
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Figure 10

computer by the successive approximation method for L - 1, which corresponds

to triangular fins.

= A = 5
The dependences n = f (-%—-), where A= ,4“/‘/ =27+ g},)@é’lﬁ' &,
1

(see Figure 5a), are shown in Figures 6, 7 and 8 for different values of

ga’ & and N = 2N;. A temperature change along the fin for several values

of the parameters gg,,é; A" and é- is shown in Figures 9 and 10.
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Utilizing the dependences shown in Figures 6 - 8, for a selected value
of € we can readily determine the geometry,optimum with respect to weight,
of triangular fins of the emitters under consideration, if the prism side
temperature T,, the distance between the emitter axes H, the dimension of
the prism Cy , and the outgoing amount of heat q; are known.

Actually, by employing the dependences shown in Figures 6 - 8 and /17
expressions (41) and (47), for selected values of Cf; 7;) /-/; &, and gy,
we can determine the angles a corresponding to several values of L;, and can
thus find the fin geometry of a minimum area.

The dashed line in Figures 6 - 8 is used to plot the curves taken from
(Ref. 4), which employed a similar formulation to study a system of star-
shaped emitters, which is shown in Figure 5b. The points far to the right

& Lo

on the curves in Figures 6 - 8 correspond to the case fi:r —

Ly

where éz is the distance between the ends of horizontal fins of adjacent
emitters of an emissive system. This is shown in Figure 5b. It can be seen
that the system under consideration has somewhat worse emissivity as compared
with the system in Figure 5b for small values of E} however, in contrast to
the latter, it has identical temperature distribution in all fins., With an
increase in H, the effectiveness of emitters in both systems coincides with

the effectiveness of a single emitter (Ref. 5).
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